Почему затухают свободные колебания в колебательном контуре

В 14:12 поступил вопрос в раздел ЕГЭ (школьный), который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике "ЕГЭ (школьный)". Ваш вопрос звучал следующим образом: ‘Почему свободные электромагнитные колебания в колебательном контуре затухают?’

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

Ершова Изольда Мартыновна – автор студенческих работ, заработанная сумма за прошлый месяц 49 978 рублей. Её работа началась с того, что она просто откликнулась на эту вакансию

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Электрическим колебательным контуром называют замкнутую цепь, состоящую из конденсатора С и катушки индуктивности L (рис. 9.8). Периодически повторяющиеся изменения силы тока в катушке и напряжения на конденсаторе при отсутствии внешних воздействий называются свободными колебаниями.

При подключении к обкладкам заряженного конденсатора (рис. 9.8а) катушки индуктивности в ней возникает ток. Если электрическое сопротивление катушки пренебрежимо мало, то энергия электрического поля Wе заряженного конденсатора начинает превращаеться в энергию магнитного поля Wм. Мгновенной раз­рядке конденсатора препятствует ЭДС самоиндукции, сдер­живающая процесс возрастания силы тока в катушке.

Читайте также:  Приложение создать видео из фото с музыкой

В тот мо­мент, когда конденсатор полностью разрядится, сила тока в катушке и энергия магнитного поля достигнут максимальных (амплитудных) значений (рис. 9.8б). После разрядки конденсатора ток в катушке убывает, но это приводит к уменьшению магнитного потока, что вызывает появ­ление в катушке ЭДС самоиндукции и индукционного тока. Сейчас на­правление индукционного тока таково, что он препятствует умень­шению магнитного потока.

Конденсатор заряжается индукционным током катушки. Когда ток исчезнет, конденсатор окажется заряженным до первоначального значения заряда, но противоположного знака (рис. 9.8в). После этого происходит следующий процесс перезарядки конденсатора током, протекающим в противоположном направлении (рис. 9.8г), и возврат в исходное состояние после совершения одного полного колебания (рис. 9.8д). В верхней части рисунка показаны значения времени соответ­ству­ющих состояний, выраженные в долях периода

, где w – круговая (циклическая) частота колебаний в контуре.

Из закона сохранения энергии следует, что при отсутствии в контуре сопротивления максимальное значение энергии We электрического поля заряжен­ного конденсатора равно максимальному значению энергии магнитного поля Wм катушки: , откуда можно получить связь амплитудных значений тока в катушке и напряжения на конденсаторе: . Это отношение имеет размерность сопротивления, поэтому величину называют волновым, или характеристическим сопротивлением контура.

Рис. 9.9. Реальный колебательный контур

В реальном электрическом контуре из-за потерь энергии на нагревание проводников и диэлектриков энергия магнитного и электрического полей по­степенно превращается во внутреннюю энергию. Свободные электромагнитные колебания в контуре оказываются затухающими.

Потери энергии в контуре можно учесть путем введения активного сопротивления (рис. 9.9). Поскольку потери в диэлектрике конденсатора малы, это сопротивление практически равно активному сопротивлению катушки индуктивности. Считая направление тока, заряжающего конденсатор, положительным, запишем закон Ома для участка цепи от отрицательно заряженной обкладки конденсатора 1 до положительно заряженной 2. В соответствии с (2.13) получаем: .

Читайте также:  Почему на почту перестали приходить письма

Направление обхода контура от точки 1 к точке 2 совпадает с направлением тока, поэтому произведение iR положительно. ЭДС самоиндукции по правилу Ленца отрицательна. Так как потенциал отрицательно заряженной пластины меньше, чем потенциал положительной, разность потенциалов (j1– j2) отрицательна: , где q – заряд на конденсаторе. Изменение заряда конденсатора вызывается током, поэтому . С учетом вышеизложенного на основании закона Ома можно записать:

, или

, (9.8)

где b = R/2L – коэффициент затухания, – собственная частота[1].

Дифференциальное уравнение (9.8) подобно уравнению, полученному для механического пружинного маятника (см. раздел "Механика"). Решение данного уравнения имеет вид: , (9.9)

Рис. 9.10. Колебания заряда на конденсаторе в контуре с потерями

где q – амплитуда тока в начальный момент времени,

(9.10)

– частота затухающих колебаний. Из (9.9) следует, что уменьшение амплитуды со временем происходит по экспоненциальному закону (рис. 9.10). Частота затухающих колебаний меньше частоты собственных колебаний w. Из (9.10) следует, что при большом затухании (b ³ w) частота становится мнимой величиной. Это означает, что колебательного процесса не происходит и заряд конденсатора уменьшается до нуля без перезарядки. Такой процесс называется апериодическим.

Выразим условие перехода от колебательного процесса к апериодическому через параметры цепи. Имеем: (R/2L) 2 ³ 1/LC или .

Степень затухания колебаний принято характеризовать логариф­мичес­ким декрементом затуханияl. Он равен логарифму натуральному двух амплитуд через период Т:

или (9.11)

Еще одной характеристикой контура является добротность. Она связана с логарифмическим декрементом затухания соотношением . Нетрудно показать, что при малом затухании, когда b

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9506 – | 7341 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Читайте также:  Сели динамики на айфоне

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Что ты хочешь узнать?

Ответ

За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в джоулево тепло, и колебания становятся затухающими.

“>

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>