Сила взаимного притяжения двух тел формула

Закон всемирного тяготения гласит:

Сила, с которой два тела притягиваются друг к другу, называется гравитационной силой (силой тяготения). Величина этой силы определяется законом всемирного тяготения, сформулированным Ньютоном.

Здесь:
F — гравитационная сила, с которой два тела притягиваются друг к другу (Ньютон),
m1 — масса первого тела (кг),
m2 — масса второго тела (кг),
r — расстояние между центрами масс тел (метр),
γ — гравитационная постоянная 6.67 · 10 -11 (м 3 /(кг · сек 2 )),

Не следует смешивать взаимное притяжение масс с силами магнитного или электрического притяжения. Это силы совершенно разной природы.

Силы гравитации не могут быть отталкиванием. Кроме того, гравитационное взаимодействие нельзя ослабить или устранить с помощью какого-либо экрана.

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения. Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле.

Закон всемирного тяготения между любыми материальными точками существует сила взаимного притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними, действующая по линии, соединяющей эти точки

Ньютон обобщил законы движения небесных тел и выяснил, что сила ( F ) равна:

где ( m_1 ) и ( m_2 ) – массы взаимодействующих тел, ( R ) — расстояние между ними, ( G ) — коэффициент пропорциональности, который называется гравитационной постоянной . Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами.

Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если (m_1 = m_2 = 1 ext <кг>) , ( R = 1 ext <м>) , то ( G = F ) , т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м.

( G = 6,67 cdot<> 10^ <-11>Н cdot<> м^2/ кг^2 ) .

Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

Сила тяжести

Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести. Под действием этой силы все тела приобретают ускорение свбодного падения.

Сила тяжести – это сила, с которой Земля притягивает тело, находящееся на её поверхности или вблизи этой поверхности.

Читайте также:  Ростелеком часто пропадает интернет

В соответствии со вторым законом Ньютона ( g = F_Т /m ) , следовательно, ( F_T = mg ) .

Если M – масса Земли, R – ее радиус, m – масса данного тела, то сила тяжести равна

Сила тяжести всегда направлена к центру Земли. В зависимости от высоты ( h ) над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с2 .

Вес тела

В технике и быту широко используется понятие веса тела.

Весом тела называют силу, с которой тело давит на опору или подвес в результате гравитационного притяжения к планете.

Вес тела обозначается ( P ) . Единица веса — ньютон ( Н ). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

При этом предполагается, что тело неподвижно относительно опоры или подвеса.

Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

Состояние тела, в котором его вес равен нулю, называют невесомостью. Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.

История проблемы гравитации

Уже древнегреческие философы задумывались над причинами притяжения тел к земной поверхности и закономерностями свободного падения. Аристотель, например, утверждал, что если бросить вниз с одинаковой высоты два камня, то более тяжелый достигнет поверхности первым. В IV в. до н.э., когда жил этот мыслитель, единственным приемлемым методом познания считалось наблюдение и размышление, поэтому проверить опытом свое утверждение Аристотель не потрудился. Лишь спустя века итальянский физик Галилео Галилей (1564 – 1642 гг.) решил подвергнуть утверждение античного философа испытанию практикой. Результаты своих опытов он опубликовал в трактате "Беседы и математические доказательства, касающиеся двух новых наук", где писал от имени персонажа Сагредо: "пушечное ядро не опередит мушкетной пули при падении с высоты двухсот локтей".

Теоретически закрепить наблюдения Галилея о том, что тела разной массы падают на землю с равными ускорениями, смог Исаак Ньютон, сформулировавший около 1666 г. закон всемирного тяготения. Согласно ему сила, с которой взаимно притягиваются друг к другу два тела, прямопропорциональна их массами и обратнопропорциональна расстоянию между ними. Гравитацию Ньютон считал всеобщим свойством тел, обладающих массой, притягиваться друг к другу.

Читайте также:  Сколько знаков в тексте ворд

Попробуй обратиться за помощью к преподавателям

Достоверность открытия Ньютона была многократно подтверждена практикой. Однако к началу XX в. в физике появились задачи, связанные с крупными астрономическими объектами, такими, как планетарные системы, галактики. Ньютоновский закон давал недостаточно точные результаты при наблюдениях за ними. Новую теорию, позволяющую устранить эти погрешности, разработал в начале XX в. Альберт Эйнштейн (1879 – 1955 гг.). В своей Общей теории относительности он предложил считать гравитацию не силой, а зависящим от массы искривлением четырехмерного пространства-времени. При этом нельзя сказать, что открытие Эйнштейна отменило теорию гравитации Ньютона. Закон всемирного тяготения является частным случаем Общей теории относительности, действующим на сравнительно небольших расстояниях. Он по-прежнему широко применяется при решении практических задач.

Закон всемирного тяготения

Гравитацией называется способность тел, обладающих массой, притягиваться друг к другу. Ее можно представить как поле, способное дистанционно воздействовать на объекты, которые не связаны никакими другими способами.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Гравитационную закономерность, найденную Ньютоном, математически можно сформулировать как

где $m_1, m_2$ – массы притягивающихся с силой $F$ тел, $r$ – расстояние между ними, $G$ – т.н. гравитационная постоянная, констнта, равная 6,67.

Важно отметить, что

  1. сила гравитационного взаимодействия ослабевает по мере удаления тел друг от друга пропорционально не просто расстаянию, а расстоянию в квадрате;
  2. под расстоянием понимается не расстояние между поверхностями, а расстояние между центрами тяжести тел.

Зависимость интенсивности от квадрата расстояния роднит гравитацию с другими фундаментальными физическими взаимодействиями: электромагнитным, сильным и слабым.

Квадратичная зависимость силы притяжения от расстояния позволяет понять, почему Солнце, масса которого в миллион раз больше земной, практически не притягивает нас, когда мы находимся на поверхности нашей планеты. Расстояние от Земли до центра Солнечной системы составляет около 150 млн. км. На такой большой дистанции солнечная гравитация практически не ощущается, хотя с помощью высокоточных приборов ее можно зарегистрировать.

В условиях планеты Земля силу, с которой она притягивает к себе близлежащие предметы (иными словами, их вес) можно подсчитать как

где $m$ – масса притягиваемого объекта, $g$ – ускорение свободного падения близ Земли (для других планет значение будет отличаться). Ускорение свободного падения несколько колеблется в зависимости от географической широты, но в среднем его можно принимать как константу, равную $9,81 frac<м><с^2>$.

Читайте также:  При печатании текста на ноутбуке перескакивает курсор

В физике вес и масса – разные понятия. Вес – сила, с которой притягивается тело к планете (не обязательно к Земле). Масса – мера инертности вещества и не зависит от находящихся рядом других тел. Однако в некоторых системах единиц измерения сила измеряется не в ньютонах, а в килограмм-силах. Для них утверждение "человек весит 80 кг" может оказаться справедливым.

Первая и вторая космические скорости

Гравитационную силу можно преодолеть с помощью противодействия других сил (например, реактивной), что делает возможными авиационные и космические полеты.

Можно провести мысленный эксперимент, представив пушку, стреляющую горизонтально с вершины высокой горы. Такую систему удобно выбрать еще и потому, что воздух тоже подчиняется законам гравитации, и вблизи поверхности планеты он плотнее, чем, скажем, на высоте 8000 м. над уровнем моря. Таким образом, снаряду, вылетающему из "высокогорной" пушки, вязкость атмосферы будет оказывать меньшее сопротивление.

Если выстрел из такой пушки будет относительно слабым, вылетевшее из нее тело упадет где-нибудь неподалеку под действием гравитации Земли, совершив полет по искривленной гравитацией траектории. Чем больше будет начальная скорость снаряда, тем дальше он пролетит, огибая земной шар. Наконец, сила выстрела может достигнуть такого значения, что кривизна траектории снаряда совпадет с окружностью радиусом от центра Земли до пушки, и снаряд начнет вращаться вокруг планеты по круговой орбите. Скорость, на которой это произойдет, называется первой космической. Ее можно вычислить как

где $G$ – гравитационная постоянная, $M$ – масса планеты, $R$ – ее радиус.

Масса Земли равна $ 5,97 cdot 10^<24>$ кг, радиус – $6371$ км. Подставив эти значения в формулу, получим, что первая космическая скорость здесь равна $7,9$ км/с.

Продолжая наращивать интенсивность выстрела, мы можем превратить траекторию сначала в эллиптическую (снаряд будет вращаться вокруг Земли по вытянутой орбите), а затем и в гиперболическую (он начнет удаляться от планеты, не возвращаясь к ней). Последнее будет означать, что снаряд достиг второй космической скорости, которую можно посчитать как

$V_2 = sqrt<2 cdot G frac> = sqrt <2>cdot V_1 = 1,41 cdot 7,9 approx 11,17 км/с $

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>