Система линейных уравнений 3 порядка

Рассмотрим систему трех линейных уравнений с тремя неизвестными:

Определитель, составленный из коэффициентов при неизвестных, называется определителем системы или главным определителем:

.

Если то система имеет единственное решение, которое определяется по формулам Крамера:

где определители – называются вспомогательными и получаются из определителя путем замены его первого, второго или третьего столбца столбцом свободных членов системы.

Пример 2. Решить систему .

Сформируем главный и вспомогательные определители:

Осталось рассмотреть правила вычисления определителей третьего порядка. Их три: правило дописывания столбцов, правило Саррюса, правило разложения.

а) Правило дописывания первых двух столбцов к основному определителю:

.

Вычисление проводятся следующим образом: со своим знаком идут произведения элементов главной диагонали и по параллелям к ней, с обратным знаком берут произведения элементов побочной диагонали и по параллелям к ней.

б) Правило Саррюса:

Со своим знаком берут произведения элементов главной диагонали и по параллелям к ней, причем недостающий третий элемент берут из противоположного угла. С обратным знаком берут произведения элементов побочной диагонали и по параллелям к ней, третий элемент берут из противоположного угла.

в) Правило разложения по элементам строки или столбца:

Определитель равен сумме произведений элементов какой-нибудь строки (столбца) на их соответствующие алгебраические дополнения.

Если , тогда .

Алгебраическое дополнение – это определитель более низкого порядка, получаемый путем вычеркивания соответствующей строки и столбца и учитывающий знак , где – номер строки, – номер столбца.

Например,

, , и т.д.

Вычислим по этому правилу вспомогательные определители и , раскрывая их по элементам первой строки.

Вычислив все определители, по правилу Крамера найдем переменные:

Проверка:

Вывод:система решена верно: .

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8945 – | 7616 – или читать все.

Читайте также:  Принтскрин экрана не работает

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

СЛАУ 3-его порядка: 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 – 11 – 12
СЛАУ 4-ого порядка: 1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9 – 10 – 11 – 12

Условие

5 x 1 – x 2 – x 3 = 0 x 1 + 2 x 2 + 3 x 3 = 14 4 x 1 + 3 x 2 + 2 x 3 = 16

Решение системы линейных алгебраических уравнений методом Гаусс

Для проверки ответов можете воспользоваться нашим онлайн сервисом – Решение системы линейных уравнений методом Гаусса. Все действия описанные в данном разделе не противоречат правилам обращения с матрицами и являются элементарными преобразованиями матрицы. Если после изучения примеров решения задач у Вас останутся вопросы, то Вы всегда можете задать их на форуме, и не забывайте про наши онлайн калькуляторы для решения задач по геометрии и другим предметам!

Перепишем систему линейных алгебраических уравнений в матричную форму. Получится матрица 3 × 4, слева от разделительной линии стоят коэффициенты при переменных, а справа стоят свободные члены.

5
-1
-1
1
2
3
4
3
2
14
16

Проведём следующие действия:

  • Поменяем местами строку № 1 и строку № 2
1
2
3
5
-1
-1
4
3
2
14
16

Проведём следующие действия:

  • Из строки № 2 вычтем строку № 1 умноженную на 5 (Строка 2 – 5 × строка 1)
  • Из строки № 3 вычтем строку № 1 умноженную на 4 (Строка 3 – 4 × строка 1)
1
2
3
-11
-16
-5
-10
14
-70
-40

Проведём следующие действия:

  • Строку № 3 поделим на -5 (Строка 3 = строка 3 / -5)
  • Поменяем местами строку № 2 и строку № 3
1
2
3
1
2
-11
-16
14
8
-70

Проведём следующие действия:

  • К строке № 3 прибавим строку № 2 умноженную на 11 (Строка 3 + 11 × строка 2)
Читайте также:  Программа для разделов жесткого диска windows 10
1
2
3
1
2
6
14
8
18

Проведём следующие действия:

  • Строку № 3 поделим на 6 (Строка 3 = строка 3 / 6)
1
2
3
1
2
1
14
8
3

Проведём следующие действия:

  • Из строки № 2 вычтем строку № 3 умноженную на 2 (Строка 2 – 2 × строка 3)
  • Из строки № 1 вычтем строку № 3 умноженную на 3 (Строка 1 – 3 × строка 3)
1
2
1
1
5
2
3

Проведём следующие действия:

  • Из строки № 1 вычтем строку № 2 умноженную на 2 (Строка 1 – 2 × строка 2)
1
1
1
1
2
3

В левой части матрицы по главной диагонали остались одни единицы. В правом столбце получаем решение:
х1 = 1
х2 = 2
х3 = 3

Администратор
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>