Системы линейных диофантовых уравнений

Разделы: Математика

Првило 1. Если с не делится на d, то уравнение ах + ву = с не имеет решений в целых числах. Н.О.Д.(а,в) = d.

Правило 2. Чтобы найти решение уравнения ах + ву = с при взаимно-простых а и в, нужно сначала найти решение (Хо ; уо) уравнения ах + ву = 1; числа СХо , Суо составляют решение уравнения ах + ву = с.

Решить в целых числах (х,у) уравнение

Первый способ. Нахождение частного решения методом подбора и запись общего решения.

Знаем, что если Н.О.Д.(а;в) =1, т.е. а и в взаимно-простые числа, то уравнение (1)

имеет решение в целых числах х и у. Н.О.Д.(5;8) =1. Методом подбора находим частное решение: Хо = 7; уо =2.

Итак, пара чисел (7;2) – частное решение уравнения (1).

Значит, выполняется равенство: 5 x 7 – 8 x 2 = 19 … (2)

Вопрос: Как имея одно решение записать все остальные решения?

Вычтем из уравнения (1) равенство (2) и получим: 5(х -7) – 8(у – 2) =0.

Отсюда х – 7 = . Из полученного равенства видно, что число (х – 7) будет целым тогда и только тогда, когда (у – 2) делится на 5, т.е. у – 2 = 5n, где n какое-нибудь целое число. Итак, у = 2 + 5n, х = 7 + 8n, где n Z.

Тем самым все целые решения исходного уравнения можно записать в таком виде:

n Z.

Второй способ. Решение уравнения относительно одного неизвестного.

Решаем это уравнение относительно того из неизвестных, при котором наименьший (по модулю) коэффициент. 5х – 8у = 19 х = .

Остатки при делении на 5: 0,1,2,3,4. Подставим вместо у эти числа.

Если у = 0, то х = =.

Если у =1, то х = =.

Если у = 2, то х = = = 7 Z.

Если у =3, то х = =.

Если у = 4 то х = =.

Итак, частным решением является пара (7;2).

Тогда общее решение: n Z.

Третий способ. Универсальный способ поиска частного решения.

Для решения применим алгоритм Евклида. Мы знаем, что для любых двух натуральных чисел а, в, таких, что Н.О.Д.(а,в) = 1 существуют целые числа х,у такие, что ах + ву = 1.

1. Сначала решим уравнение 5m – 8n = 1 используя алгоритм Евклида.

2. Затем найдем частное решение уравнения (1)по правилу 2.

3. Запишем общее решение данного уравнения (1).

1. Найдем представление: 1 = 5m – 8n. Для этого используем алгоритм Евклида.

8 = 5 1 + 3.

5 = 3

3 = 2 .

Из этого равенства выразим 1. 1 = 3 – 2 = 3 – (5 – 3 ) =

Читайте также:  Правильный пятиугольник построение по клеткам

= 3 – 5 = 3 = (8 – 5 – 5 82 -5

= 5(-2). Итак, m = -3, n = -2.

2. Частное решение уравнения (1): Хо = 19m; уо =19n.

Отсюда получим: Хо =19; уо =19 .

Пара (-57; -38)- частное решение (1).

3. Общее решение уравнения (1): n Z.

Четвертый способ. Геометрический.

1. Решим уравнение 5х – 8у = 1 геометрически.

2. Запишем частное решение уравнения (1).

3. Запишем общее решение данного уравнения (1).

Отложим на окружности последовательно друг за другом равные дуги, составляющие

-ю часть полной окружности. За 8 шагов получим все вершины правильного вписанного в окружность 8-угольника. При этом сделаем 5 полных оборотов.

На 5 – ом шаге получили вершину, соседнюю с начальной, при этом сделали 3 полных оборота и еще прошли – ю часть окружности, так что х = у + .

Итак, Хо = 5, уо =3 является частным решением уравнения 5х – 8у = 1.

2. Частное решение уравнения (1): Хо = 19 уо =19

3. Общее решение уравнения (1): n Z.

Похожие темы научных работ по математике , автор научной работы — Малашонок Г. И.

Текст научной работы на тему «Решение систем линейных диофантовых уравнений»

РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ ДИОФАНТОВЫХ УРАВНЕНИЙ

Malashonok G.I. Solving systems of linear Diophantine equations. New methods to solve linear systems of Diophantine equations are proposed. These problems are considered from two points of view – modular and p-adic. Both methods allow obtaining solutions of a linear system with the size nxjn with the complexity 0(np + lm). For quasi-square systems, the p-adic method allows obtaining solutions with the complexity 0(n3). Both estimations have the accuracy up to the logarithmic multipliers, /3 being the power in the estimation of matrix multiplication time.

Задачи, в которых ищутся целочисленные решения алгебраических уравнений, относятся к одним из самых старых задач в математике, которые неизменно привлекали к себе внимание.

Основной метод для решения линейных систем диофантовых уравнений основан на вычислении формы Смита матрицы коэффициентов системы [1, 2]. В недавних работах были получены вероятностные методы для нахождения решений линейной системы диофантовых уравнений [3, 4]. Вероятностные методы являются самыми быстрыми из известных сегодня методов. Однако они не гарантируют нахождение решения. Если решение не найдено вероятностным методом, то всегда существует вероятность того, что система совместна, но ее решение не найдено случайно.

В настоящей статье предлагаются детерминистские р-адический и модулярный методы, которые не связаны с вычислением формы Смита матрицы коэффициентов. Оба метода сводят задачу к решению системы в кольце вычетов.

Первый из них, с пощью р-адического подьема, вычисляет базисное множество точек на гиперплоскости всех решений системы. А затем вычисляет все целые точки на этой плоскости.

Читайте также:  Почему программа здоровье не считает шаги

Второй метод основан на преобразовании к эквивалентной системе с левым квадратным блоком, имеющим диагональный вид. Его диагональные элементы равны определителю соответствующего блока исходной матрицы. Вычисления выполняются с помощью китайской теоремы об остатках. А затем решается систе-

ма по модулю этого определителя. Кроме того удается объединить детерминистские и вероятностные методы. Когда решение не получено вероятностным методом, то процесс решения продолжается до установления несовместности системы или построения всех решений системы детерминистским р-адическим методом.

Показано, что для квазиквадратных систем сложность р-адического метода 0(п3), а модулярного 0(п^+1). Для существенно прямоугольных систем, когда число неизвестных т более чем вдвое превышает число уравнений п, оба метода имеют одинаковый порядок сложности – 0<п^+1т). Здесь оценки приводятся с точностью до логарифмического множителя и предполагается применение стандартного умножения. /3 – показатель степени в оценке сложности матричного умножения.

Приводится алгоритм со сложностью 0(пР

1т) для решения систем над кольцами вычетов.

Как обычно, все результаты переносятся с кольца целых чисел на кольцо полиномов над полем.

Пусть И, – коммутативное кольцо с единицей. Будем называть диофантовой матрицей для ненулевой пары а из И.2 унимодулярную матрицу Еа € Я2*2 такую, что

Еаа = ^ ^ V 9 ± 0, И., выбирающую представителя класса смежности для р’ е К. в прообразе -1(р/):

а’ = (?)€в /2 диофантову матрицу Еа>

следующим образом Еа> = ф(Еа). Очевидно, такое определение корректно, так как

Еа’С1 = ^ о = 1, §’ Ф 0-

Покажем, что д’ = ф(д) ф 0.

Из-за обратимости диофантовых матриц р и д делятся на д. Поэтому если ф(д) = 0,

диофантова матрица для а и Епа =| " ). Определим для ненулевой пары

то ф(р) = ф(д) = 0, но по условию хоть одно из чисел р’ = ф<р)^д’ = ф<я) не должно быть нулем.

Следовательно, множество квазиевклидовых колец содержит все 67 кольца и их факторко-льца, в том числе евклидовы кольца и их фак-торкольца.

Будем называть матрицу А = (а^-), размера пхт, верхней треугольной, если все элементы под главной диагональю нулевые: (г, ]) = 0 для всех п > ] > г > 1. Заметим, что элементы на главной диагонали и над ней могут тоже быть нулевыми.

Будем говорить, что матрица А разложима, если она является произведением унимодулярной матрицы А на верхнюю треугольную матрицу Л: А — А А.

Предложение 2. В квазиевклидовом кольце все матрицы разложимы.

Построим такое разложение для матрицы А = (ау), размера п х т. Пусть

Читайте также:  Сколько точек в домино

** = ( £ )’ * > * *- ■ ‘ матрица для а^. Обозначим через Е™х> унимо-дулярную матрицу, которая получается после замены в единичной матрице порядка п четырх элементов <33)1 (уг), (гу), (и) соответственно на четыре элемента (11), (12), (21), (22) матрицы Еа1>3. Пусть Е$ = Еап^ • ■ • Еаз+1>я и = Еп- • • • Е. Тогда и – унимодулярная матрица, и А – верхняя треугольная матрица. Эти вычисления приводят к последовательному исключению ненулевых элементов сначала в первом столбце, затем во втором столбце, и так далее до п — 1-го столбца.

асимптотическую оценку сложности вычисления диофантовой матрицы, М(п) – асимптотическую оценку сложности умножения матриц порядка п, М<п) — ап^. Известное сегодня значение для /3 меньше 2,356

Лемма 1. Пусть И. – квазиевклидово кольцо, А,С 6 КпХп, А – верхняя треугольная матрица. Тогда матрицу ^ ^ ^

асимптотической оценкой сложности, не превосходящей

Доказательство. Для разложения матрицы размера 2 х 1 достаточно умножить на ее диофантовую матриц>’. Пусть теперь п = 2Р, р > 0.

Диофантово уравнение – это полиномиальное уравнение, обычно с двумя или более неизвестными, так что требуются только интегральные решения. Интегральное решение – это такое решение, при котором все неизвестные переменные принимают только целые значения.

Даны три целых числа a, b, c, представляющих линейное уравнение вида: ax + by = c. Определите, имеет ли уравнение такое решение, чтобы x и y были целыми значениями.

Примеры :

Рекомендуется: Пожалуйста, сначала попробуйте подход , прежде чем переходить к решению.

Решение:
Для линейных уравнений диофантовых уравнений интегральные решения существуют тогда и только тогда, когда GCD коэффициентов двух переменных делит постоянный член идеально. Другими словами, интегральное решение существует, если GCD (a, b) делит c.

Таким образом, алгоритм определения наличия интегрального решения уравнения довольно прост.

  • Найти ГКД а и б
  • Проверьте, если c% GCD (a, b) == 0
  • Если да, то напечатайте Возможно
  • Иначе печать невозможна

Ниже приведена реализация вышеуказанного подхода.

ссылка на сайт
brightness_4
код

Джава

ссылка на сайт
brightness_4
код

python3

ссылка на сайт
brightness_4
код

ссылка на сайт
brightness_4
код

ссылка на сайт
brightness_4
код

Выход :

Как это работает?
Пусть GCD из «a» и «b» будет «g». г делит а и б. Это означает, что g также делит (ax + на) (если x и y являются целыми числами). Это подразумевает, что gcd также делит ‘c’, используя отношение ax + by = c. Обратитесь к этой вики-ссылке для более подробной информации.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>