Скалярное произведение комплексных векторов

В квантовой механике широко применяют векторы, координаты которых могут быть комплексными числами. В этом случае имеются некоторые особенности в правилах построения скалярного произведения. Они, в основном, сводятся к установлению соотношения между ко- и контравекторами. В квантовой механике ковекторы принято обозначать символом á x| и называть бравекторами, тогда как контравекторы обозначаются символом | xñ и называются кет-векторами. Один и то же вектор можно представить и в виде бра-вектора, и в виде кет-вектора. При этом они будут отличаться друг от друга не просто способом расположения (горизонтальным или вертикальным) чисел-координат, но и тем, что их координаты (с одними и теми же номерами) являются комплексно сопряженными между собой. (Комплексно сопряженными являются два комплексных числа, отличающиеся только знаком при мнимой части. Например, Z = 2 + 3i и Z* = 2 – 3i. ) Особенность взаимно сопряженных комплексных чисел состоит в том, что их произведение, называемое квадратом модуля комплексного числа, всегда является действительным числом. Например:

| Z | 2 = Z × Z* = (2 + 3i)(2 – 3i) = 2 2 + 3 2 = 13

Поэтому, если перемножить (в смысле скалярногоумножения) два вектора, координаты которых взаимно сопряжены, то квадрат модуля любого вектора будет не только действительным, но и положительным числом. Следовательно, из него всегда можно извлечь корень и определить длину (модуль) вектора. Подчеркнем, что два вектора, отличающиеся типом (бра- и кет-), и координаты которых взаимно комплексно сопряжены, называются сопряженными векторами (или, более полно, эрмитово сопряженными), что отмечается верхним индексом ( + ).

Если векторы-сомножители различны, то их скалярное произведение не будет действительным числом. Такие комплексные числа, являющиеся скалярным произведением двух комплексных векторов:

С = á х|у ñ

называются квантовомеханическими амплитудами и занимают центральное место в математическом аппарате квантовой механики. Отсюда понятно и происхождение названия: первая половина скобки (от англ. — bracket), изображающей скалярное произведение, называется бра-, а вторая половина — кет-вектором.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась – это был конец пары: "Что-то тут концом пахнет". 8516 – | 8103 – или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Primary tabs

Forums:

Скалярное произведение комплексных векторов

Норма вектора через скалярное произведение

Евклидова норма через скалярное произведение для вектора $x$ выглядит так:
$Large ||x|| = sqrt<(x,x)>$

Косинус угла через скалярное произведение и норму

Косинус угла $m$ между векторами $x$ и $y$ в комплексном пространстве определяется равенством:
$Large cos , m = <(x, y)over<||x|| * ||y||>>$
где:

  • $(x,y)$ — скалярное произведение этих векторов
  • а $||x|| * ||y||$ — произведение их норм

Пример расчета косинуса для комплексных векторов

Возьмём два вектора:
$[1+i, 2]$ и $[2+i, i]$
Вычислим:

  • Их скалярное произведение: $ [1+i, 2] cdot [2+i, i] = (1+i) cdot (overline<2+i>) + 2 cdot overline i = (1+i) cdot (2-i) + 2 cdot (-i) = 3-i$
  • Норму $[1+i, 2]$:
    $sqrt <[1+i, 2] cdot [1+i, 2]>= sqrt <1 – i^2 + 4>= sqrt<6>$
  • Норму $[2+i, i]$:
    $sqrt <[2+i, i] cdot [2+i, i]>= sqrt <4 – i^2 – i^2>= sqrt<6>$
Читайте также:  Почему не устанавливается взломанная игра

Тогда для косинуса угла между этими векторами получаем:
$large cos , m = <3 – i over<sqrt<6>* sqrt<6>>> = <3 – i over<6>>$
т.е. фактически комплексное число (т.е. комплексное значение косинуса).

Вычисление угла между комплексными векторами

Вычисление угла требует получения арккосинуса для комплексного числа.

Скалярное произведение векторов называют число, равное произведению дин этих векторов на косинус угла между ними.

Обозначение произведения векторов a → и b → имеет вид a → , b → . Преобразуем в формулу:

a → , b → = a → · b → · cos a → , b → ^ . a → и b → обозначают длины векторов, a → , b → ^ – обозначение угла между заданными векторами. Если хоть один вектор нулевой, то есть имеет значение 0, то и результат будет равен нулю, a → , b → = 0

При умножении вектора самого на себя, получим квадрат его дины:

a → , b → = a → · b → · cos a → , a → ^ = a → 2 · cos 0 = a → 2

Скалярное умножение вектора самого на себя называют скалярным квадратом.

Вычисляется по формуле:

a → , b → = a → · b → · cos a → , b → ^ .

Запись a → , b → = a → · b → · cos a → , b → ^ = a → · n p a → b → = b → · n p b → a → показывает, что n p b → a → – это числовая проекция a → на b → , n p a → a → – проекция b → на a → соостветсвенно.

Сформулируем определение произведения для двух векторов:

Скалярное произведение двух векторов a → на b → называют произведение длины вектора a → на проекцию b → на направление a → или произведение длины b → на проекцию a → соответственно.

Скалярное произведение в координатах

Вычисление скалярного произведения можно производить через координаты векторов в заданной плоскости или в пространстве.

Скаларное произведение двух векторов на плоскости, в трехмерном простарнстве называют сумму координат заданных векторов a → и b → .

При вычислении на плоскости скаларного произведения заданных векторов a → = ( a x , a y ) , b → = ( b x , b y ) в декартовой системе используют:

a → , b → = a x · b x + a y · b y ,

для трехмерного пространства применимо выражение:

a → , b → = a x · b x + a y · b y + a z · b z .

Фактически это является третьим определением скалярного произведения.

Для доказательства используем a → , b → = a → · b → · cos a → , b → ^ = a x · b x + a y · b y для векторов a → = ( a x , a y ) , b → = ( b x , b y ) на декартовой системе.

Следует отложить векторы

O A → = a → = a x , a y и O B → = b → = b x , b y .

Тогда длина вектора A B → будет равна A B → = O B → – O A → = b → – a → = ( b x – a x , b y – a y ) .

Рассмотрим треугольник O A B .

A B 2 = O A 2 + O B 2 – 2 · O A · O B · cos ( ∠ A O B ) верно , исходя из теоремы косинусов.

По условию видно, что O A = a → , O B = b → , A B = b → – a → , ∠ A O B = a → , b → ^ , значит, формулу нахождения угла между векторами запишем иначе

b → – a → 2 = a → 2 + b → 2 – 2 · a → · b → · cos ( a → , b → ^ ) .

Тогда из первого определения следует, что b → – a → 2 = a → 2 + b → 2 – 2 · ( a → , b → ) , значит ( a → , b → ) = 1 2 · ( a → 2 + b → 2 – b → – a → 2 ) .

Применив формулу вычисления длины векторов, получим:
a → , b → = 1 2 · ( ( a 2 x + a y 2 ) 2 + ( b 2 x + b y 2 ) 2 – ( ( b x – a x ) 2 + ( b y – a y ) 2 ) 2 ) = = 1 2 · ( a 2 x + a 2 y + b 2 x + b 2 y – ( b x – a x ) 2 – ( b y – a y ) 2 ) = = a x · b x + a y · b y

( a → , b → ) = a → · b → · cos ( a → , b → ^ ) = = a x · b x + a y · b y + a z · b z

– соответственно для векторов трехмерного пространства.

Скалярное произведение векторов с координатами говорит о том, что скалярный квадрат вектора равен сумме квадратов его координат в пространстве и на плоскости соответственно. a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) и ( a → , a → ) = a x 2 + a y 2 .

Читайте также:  Самсунг смарт тв не находит цифровые каналы

Скалярное произведение и его свойства

Существуют свойства скалярного произведения, которые применимы для a → , b → и c → :

  1. коммутативность ( a → , b → ) = ( b → , a → ) ;
  2. дистрибутивность ( a → + b → , c → ) = ( a → , c → ) + ( b → , c → ) , ( a → + b → , c → ) = ( a → , b → ) + ( a → , c → ) ;
  3. сочетательное свойство ( λ · a → , b → ) = λ · ( a → , b → ) , ( a → , λ · b → ) = λ · ( a → , b → ) , λ – любое число;
  4. скалярный квадрат всегда больше нуля ( a → , a → ) ≥ 0 , где ( a → , a → ) = 0 в том случае, когда a → нулевой.

Пример 1

Свойства объяснимы благодаря определению скалярного произведения на плоскости и свойствам при сложении и умножении действительных чисел.

Доказать свойство коммутативности ( a → , b → ) = ( b → , a → ) . Из определения имеем, что ( a → , b → ) = a y · b y + a y · b y и ( b → , a → ) = b x · a x + b y · a y .

По свойству коммутативности равенства a x · b x = b x · a x и a y · b y = b y · a y верны, значит a x · b x + a y · b y = b x · a x + b y · a y .

Отсюда следует, что ( a → , b → ) = ( b → , a → ) . Что и требовалось доказать.

Дистрибутивность справедлива для любых чисел:

( a ( 1 ) → + a ( 2 ) → + . . . + a ( n ) → , b → ) = ( a ( 1 ) → , b → ) + ( a ( 2 ) → , b → ) + . . . + ( a ( n ) → , b → )

и ( a → , b ( 1 ) → + b ( 2 ) → + . . . + b ( n ) → ) = ( a → , b ( 1 ) → ) + ( a → , b ( 2 ) → ) + . . . + ( a → , b → ( n ) ) ,

( a ( 1 ) → + a ( 2 ) → + . . . + a ( n ) → , b ( 1 ) → + b ( 2 ) → + . . . + b ( m ) → ) = = ( a ( 1 ) → , b ( 1 ) → ) + ( a ( 1 ) → , b ( 2 ) → ) + . . . + ( a ( 1 ) → , b ( m ) → ) + + ( a ( 2 ) → , b ( 1 ) → ) + ( a ( 2 ) → , b ( 2 ) → ) + . . . + ( a ( 2 ) → , b ( m ) → ) + . . . + + ( a ( n ) → , b ( 1 ) → ) + ( a ( n ) → , b ( 2 ) → ) + . . . + ( a ( n ) → , b ( m ) → )

Скалярное произведение с примерами и решениями

Любая задача такого плана решается с применением свойств и формул, касающихся скалярного произведения:

  1. ( a → , b → ) = a → · b → · cos ( a → , b → ^ ) ;
  2. ( a → , b → ) = a → · n p a → b → = b → · n p b → a → ;
  3. ( a → , b → ) = a x · b x + a y · b y или ( a → , b → ) = a x · b x + a y · b y + a z · b z ;
  4. ( a → , a → ) = a → 2 .

Рассмотрим некоторые примеры решения.

Длина a → равна 3, длина b → равна 7. Найти скалярное произведение, если угол имеет 60 градусов.

По условию имеем все данные, поэтому вычисляем по формуле:

( a → , b → ) = a → · b → · cos ( a → , b → ^ ) = 3 · 7 · cos 60 ° = 3 · 7 · 1 2 = 21 2

Ответ: ( a → , b → ) = 21 2 .

Заданны векторы a → = ( 1 , – 1 , 2 – 3 ) , b → = ( 0 , 2 , 2 + 3 ) . Чему равно скалярной произведение.

В данном примере рассматривается формула вычисления по координатам, так как они заданы в условии задачи:

( a → , b → ) = a x · b x + a y · b y + a z · b z = = 1 · 0 + ( – 1 ) · 2 + ( 2 + 3 ) · ( 2 + 3 ) = = 0 – 2 + ( 2 – 9 ) = – 9

Ответ: ( a → , b → ) = – 9

Найти скалярное произведение A B → и A C → . На координатной плоскости заданы точки A ( 1 , – 3 ) , B ( 5 , 4 ) , C ( 1 , 1 ) .

Для начала вычисляются координаты векторов, так как по условию даны координаты точек:

A B → = ( 5 – 1 , 4 – ( – 3 ) ) = ( 4 , 7 ) A C → = ( 1 – 1 , 1 – ( – 3 ) ) = ( 0 , 4 )

Подставив в формулу с использованием координат, получим:

( A B → , A C → ) = 4 · 0 + 7 · 4 = 0 + 28 = 28 .

Ответ: ( A B → , A C → ) = 28 .

Заданы векторы a → = 7 · m → + 3 · n → и b → = 5 · m → + 8 · n → , найти их произведение. m → равен 3 и n → равен 2 единицам, они перпендикулярные.

( a → , b → ) = ( 7 · m → + 3 · n → , 5 · m → + 8 · n → ) . Применив свойство дистрибутивности, получим:

( 7 · m → + 3 · n → , 5 · m → + 8 · n → ) = = ( 7 · m → , 5 · m → ) + ( 7 · m → , 8 · n → ) + ( 3 · n → , 5 · m → ) + ( 3 · n → , 8 · n → )

Выносим коэффициент за знак произведения и получим:

( 7 · m → , 5 · m → ) + ( 7 · m → , 8 · n → ) + ( 3 · n → , 5 · m → ) + ( 3 · n → , 8 · n → ) = = 7 · 5 · ( m → , m → ) + 7 · 8 · ( m → , n → ) + 3 · 5 · ( n → , m → ) + 3 · 8 · ( n → , n → ) = = 35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( n → , m → ) + 24 · ( n → , n → )

Читайте также:  Сколько стоит подписка на ютуб премиум

По свойству коммутативности преобразуем:

35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( n → , m → ) + 24 · ( n → , n → ) = = 35 · ( m → , m → ) + 56 · ( m → , n → ) + 15 · ( m → , n → ) + 24 · ( n → , n → ) = = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → )

В итоге получим:

( a → , b → ) = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → ) .

Теперь применим формулу для скалярного произведения с заданным по условию углом:

( a → , b → ) = 35 · ( m → , m → ) + 71 · ( m → , n → ) + 24 · ( n → , n → ) = = 35 · m → 2 + 71 · m → · n → · cos ( m → , n → ^ ) + 24 · n → 2 = = 35 · 3 2 + 71 · 3 · 2 · cos π 2 + 24 · 2 2 = 411 .

Ответ: ( a → , b → ) = 411

Если имеется числовая проекция.

Найти скалярное произведение a → и b → . Вектор a → имеет координаты a → = ( 9 , 3 , – 3 ) , проекция b → с координатами ( – 3 , – 1 , 1 ) .

По условию векторы a → и проекция b → противоположно направленные, потому что a → = – 1 3 · n p a → b → → , значит проекция b → соответствует длине n p a → b → → , при чем со знаком «-»:

n p a → b → → = – n p a → b → → = – ( – 3 ) 2 + ( – 1 ) 2 + 1 2 = – 11 ,

Подставив в формулу, получим выражение:

( a → , b → ) = a → · n p a → b → → = 9 2 + 3 2 + ( – 3 ) 2 · ( – 11 ) = – 33 .

Ответ: ( a → , b → ) = – 33 .

Задачи при известном скалярном произведении, где необходимо отыскать длину вектора или числовую проекцию.

Какое значение должна принять λ при заданном скалярном произведении a → = ( 1 , 0 , λ + 1 ) и b → = ( λ , 1 , λ ) будет равным -1.

Из формулы видно, что необходимо найти сумму произведений координат:

( a → , b → ) = 1 · λ + 0 · 1 + ( λ + 1 ) · λ = λ 2 + 2 · λ .

В дано имеем ( a → , b → ) = – 1 .

Чтобы найти λ , вычисляем уравнение:

λ 2 + 2 · λ = – 1 , отсюда λ = – 1 .

Физический смысл скалярного произведения

Механика рассматривает приложение скалярного произведения.

При работе А с постоянной силой F → перемещаемое тело из точки M в N можно найти произведение длин векторов F → и M N → с косинусом угла между ними, значит работа равна произведению векторов силы и перемещения:

Перемещение материальной точки на 3 метра под действием силы равной 5 ньтонов направлено под углом 45 градусов относительно оси. Найти A .

Так как работа – это произведение вектора силы на перемещение, значит, исходя из условия F → = 5 , S → = 3 , ( F → , S → ^ ) = 45 ° , получим A = ( F → , S → ) = F → · S → · cos ( F → , S → ^ ) = 5 · 3 · cos ( 45 ° ) = 15 2 2 .

Ответ: A = 15 2 2 .

Материальная точка, перемещаясь из M ( 2 , – 1 , – 3 ) в N ( 5 , 3 λ – 2 , 4 ) под силой F → = ( 3 , 1 , 2 ) , совершила работа равную 13 Дж. Вычислить длину перемещения.

При заданных координатах вектора M N → имеем M N → = ( 5 – 2 , 3 λ – 2 – ( – 1 ) , 4 – ( – 3 ) ) = ( 3 , 3 λ – 1 , 7 ) .

По формуле нахождения работы с векторами F → = ( 3 , 1 , 2 ) и M N → = ( 3 , 3 λ – 1 , 7 ) получим A = ( F ⇒ , M N → ) = 3 · 3 + 1 · ( 3 λ – 1 ) + 2 · 7 = 22 + 3 λ .

По условию дано, что A = 13 Д ж , значит 22 + 3 λ = 13 . Отсюда следует λ = – 3 , значит и M N → = ( 3 , 3 λ – 1 , 7 ) = ( 3 , – 10 , 7 ) .

Чтобы найти длину перемещения M N → , применим формулу и подставим значения:

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>