Сколько км горизонт земли

Горизо́нт (др.-греч. ὁρίζων — буквально: ограничивающий) — граница неба с земной или водной поверхностью [1] . По другому определению в понятие включают также видимую часть этой поверхности [2] . Различают горизонт видимый и горизонт истинный. Угол между плоскостью истинного горизонта и направлением на видимый горизонт называют наклонением горизонта (синонимы: понижение горизонта, депрессия горизонта) [3] . На иллюстрации: точка A — точка наблюдения; Н’Н — плоскость истинного горизонта; отрезок AC1 — геометрическая (теоретическая) дальность видимого горизонта; дуга AB1 — географическая дальность видимого горизонта; угол α — наклонение горизонта; B1B2B3B4 — линия видимого горизонта.

Содержание

Видимый горизонт [ править | править код ]

Видимым горизонтом называют и линию, по которой небо кажется граничащим с поверхностью Земли, и пространство неба над этой границей, и видимую наблюдателем поверхность Земли, и всё видимое вокруг наблюдателя пространство, до конечных пределов его [4] . Таким же образом понятие горизонта может быть определено для других небесных тел [5] .

Синонимы: небосклон, кругозор, небозём, небоскат, закат неба, глазоём, зреймо, завесь, закрой, озор, овидь, окоём, оглядь [6] .

Расстояние до видимого горизонта [ править | править код ]

  • В случае, если видимый горизонт определять как границу между небом и Землёй, то рассчитать геометрическую дальность видимого горизонта можно, воспользовавшись теоремой Пифагора:

d = ( R + h ) 2 − R 2 <displaystyle d=<sqrt <(R+h)^<2>-R^<2>>>>Здесь d — геометрическая дальность видимого горизонта, R — радиус Земли, h — высота точки наблюдения относительно поверхности Земли [7] . В приближении, что Земля — идеально круглая и без учёта рефракции эта формула даёт хорошие результаты вплоть до высот расположения точки наблюдения порядка 100 км над поверхностью Земли. Принимая радиус Земли равным 6371 км и отбрасывая из-под корня величину h 2 , которая не слишком значима ввиду малого отношения h/R, получим ещё более простую приближённую формулу [8] : d ≈ 113 h , <displaystyle dapprox 113<sqrt >,,>
где d и h в километрах или
d ≈ 3 , 57 h , <displaystyle dapprox 3,57<sqrt
>,,>
где d в километрах, а h в метрах. Ниже приведено расстояние до горизонта при наблюдении с различных высот [9] :

Читайте также:  Принтер мгновенной печати фото
Высота над поверхностью Земли h Расстояние до горизонта d Пример места наблюдения
1,75 м 4,7 км стоя на земле
25 м 17,9 км 8-этажный дом
50 м 25,3 км колесо обозрения
150 м 43,8 км воздушный шар
2 км 159,8 км гора
10 км 357,3 км самолёт
350 км 2114,0 км космический корабль

Дальность видимости [ править | править код ]

На рисунке справа дальность видимости объекта определяют по формуле

D B L = 3.57 ( h B + h L ) <displaystyle D_<mathrm >=3.57,( <sqrt >>>+ <sqrt >>>)> ,

где D B L <displaystyle D_<mathrm >> — дальность видимости в километрах,
h B <displaystyle h_<mathrm >> и h L <displaystyle h_<mathrm >> — высоты точки наблюдения и объекта в метрах.

Если учесть земную рефракцию, то формула примет вид:

D B L 3.86 ( h B + h L ) . <displaystyle D_<mathrm >

То же самое, но D B L <displaystyle D_<mathrm >> — в морских милях:

D B L 2.08 ( h B + h L ) . <displaystyle D_<mathrm >

Для приближённого расчёта дальности видимости объектов применяют номограмму Струйского (см. илл.): на двух крайних шкалах номограммы отмечают точки, соответствующие высоте точки наблюдения и высоте объекта, затем проводят через них прямую и на пересечении этой прямой со средней шкалой получают дальность видимости объекта [15] .

На морских картах, в лоциях и других навигационных пособиях дальность видимости маяков и огней указывается для высоты точки наблюдения равной 5 м [10] . Если высота точки наблюдения иная, то вводится поправка [16] .

Горизонт на Луне [ править | править код ]

Нужно сказать, что расстояния на Луне очень обманчивы. Благодаря отсутствию воздуха удалённые предметы видятся на Луне более чётко и поэтому всегда кажутся ближе.

Лунный горизонт практически вдвое ближе земного. При этом расстояние до лунного горизонта зрительно определить крайне сложно по причине отсутствия атмосферы [17] , а также объектов известного размера, по которым можно бы судить о масштабе.

Читайте также:  Пропали фото из галереи айфона что делать

Истинный горизонт [ править | править код ]

Истинный горизонт — мысленно воображаемый большой круг небесной сферы, плоскость которого перпендикулярна отвесной линии в точке наблюдения. Аналогично общему понятию, истинным горизонтом может называться не круг, а окружность, то есть линия пересечения небесной сферы и плоскости, перпендикулярной отвесной линии.

Синонимы: математический горизонт, астрономический горизонт [18] .

Искусственный горизонт — прибор, которым пользуются для определения истинного горизонта.

Например, истинный горизонт легко определить, если поднести к глазам стакан с водой так, чтобы уровень воды был виден как прямая линия [19] .

Горизонт в философии [ править | править код ]

Понятие горизонта в философию вводит Эдмунд Гуссерль, а Гадамер определяет его следующим образом: «Горизонт — поле зрения, охватывающее и обнимающее все то, что может быть увидено из какого-либо пункта» [20]

Расчет видимого горизонта и дальности видимости в зависимости от высоты наблюдателя и наблюдаемого объекта.

Калькулятор ниже предназначен для расчета видимого горизонта и дальности видимости в зависимости от высоты наблюдателя и наблюдаемого объекта. Под ним, как водится, немного теории.

Видимый горизонт и дальность видимости

Видимый горизонт
Так как земля изогнута, наблюдателю, находящемуся, например, в море, представляется, что он находится в центре круга, по краям которого небо как бы смыкается с морской поверхностью. Эта окружность и называется видимым горизонтом наблюдателя. На картинке слева видимый горизонт обозначен пунктирной линией. То есть для наблюдателя, находящегося в точке А на высоте h от земли, видимый горизонт будет образован всеми точками касания лучей зрения земной поверхности (угол BCO равен 90 градусов).

Говоря о видимом горизонте чаще всего имеют в виду длину d отрезка BC. Длину d легко вывести из теоремы Пифагора.

Читайте также:  Рейтинг китайских мобильных телефонов

где R – радиус Земли, который обычно принимают за 6378 километров.

В реальной жизни на стороне человека выступает атмосфера. Она, благодаря явлению рефракции, то есть отражения лучей в верхних слоях атмосферы, расширяет его горизонты примерно на 6% 🙂
Формула, таким образом, принимает вид

В принципе, везде (по крайней мере, насколько я находил в Интернете) для расчетов используют упрощенную формулу, из которой исключен радиус Земли. Она, кстати, вполне выводится из верхней.
, для результата в морских милях или
, для результата в километрах

Дальность видимости
Дальность видимости предметов определяется наибольшим расстоянием, на котором наблюдатель увидит вершину наблюдаемого объекта на линии горизонта. Как видно из рисунка, она зависит как от высоты наблюдателя, так и от высоты наблюдаемого объекта. Собственно, это сумма дальности видимого горизонта наблюдателя и дальности видимого горизонта наблюдаемого объекта. Это довольно важный параметр для навигации.

В калькуляторе я ее вычисляю, а на практике, насколько я понимаю, дальности видимости береговых ориентиров указываются во всяческих лоциях, мореходных таблицах и тому подобном для высоты наблюдателя, равной пяти метрам. Для поправки на фактическую высоту наблюдателя используется «номограмма для расчета дальности видимости предметов в море в дневное время при среднем состоянии атмосферы».

Таблица расстояния до горизонта (удаления горизонта) в зависимости от высоты глаз наблюдателя.

Расстояние до горизонта, конечно, можно вычислить по формуле: S = [(R+h) 2 – R 2 ] 1/2 где:

  • S- высота глаз наблюдателя в метрах
  • R – радиус Земли- обычно: 6367250 м
  • h – высота глаз наблюдателя над поверхностью в метрах

Но намного удобнее пользоваться таблицей (которая, конечно, приблизительна, да верна только для моря, но все равно – человеку с головой – дает полное представление о явлении):

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>