Сколько расстояние до горизонта

Горизо́нт (др.-греч. ὁρίζων — буквально: ограничивающий) — граница неба с земной или водной поверхностью [1] . По другому определению в понятие включают также видимую часть этой поверхности [2] . Различают горизонт видимый и горизонт истинный. Угол между плоскостью истинного горизонта и направлением на видимый горизонт называют наклонением горизонта (синонимы: понижение горизонта, депрессия горизонта) [3] . На иллюстрации: точка A — точка наблюдения; Н’Н — плоскость истинного горизонта; отрезок AC1 — геометрическая (теоретическая) дальность видимого горизонта; дуга AB1 — географическая дальность видимого горизонта; угол α — наклонение горизонта; B1B2B3B4 — линия видимого горизонта.

Содержание

Видимый горизонт [ править | править код ]

Видимым горизонтом называют и линию, по которой небо кажется граничащим с поверхностью Земли, и пространство неба над этой границей, и видимую наблюдателем поверхность Земли, и всё видимое вокруг наблюдателя пространство, до конечных пределов его [4] . Таким же образом понятие горизонта может быть определено для других небесных тел [5] .

Синонимы: небосклон, кругозор, небозём, небоскат, закат неба, глазоём, зреймо, завесь, закрой, озор, овидь, окоём, оглядь [6] .

Расстояние до видимого горизонта [ править | править код ]

  • В случае, если видимый горизонт определять как границу между небом и Землёй, то рассчитать геометрическую дальность видимого горизонта можно, воспользовавшись теоремой Пифагора:

d = ( R + h ) 2 − R 2 <displaystyle d=<sqrt <(R+h)^<2>-R^<2>>>>Здесь d — геометрическая дальность видимого горизонта, R — радиус Земли, h — высота точки наблюдения относительно поверхности Земли [7] . В приближении, что Земля — идеально круглая и без учёта рефракции эта формула даёт хорошие результаты вплоть до высот расположения точки наблюдения порядка 100 км над поверхностью Земли. Принимая радиус Земли равным 6371 км и отбрасывая из-под корня величину h 2 , которая не слишком значима ввиду малого отношения h/R, получим ещё более простую приближённую формулу [8] : d ≈ 113 h , <displaystyle dapprox 113<sqrt >,,>
где d и h в километрах или
d ≈ 3 , 57 h , <displaystyle dapprox 3,57<sqrt
>,,>
где d в километрах, а h в метрах. Ниже приведено расстояние до горизонта при наблюдении с различных высот [9] :

Высота над поверхностью Земли h Расстояние до горизонта d Пример места наблюдения
1,75 м 4,7 км стоя на земле
25 м 17,9 км 8-этажный дом
50 м 25,3 км колесо обозрения
150 м 43,8 км воздушный шар
2 км 159,8 км гора
10 км 357,3 км самолёт
350 км 2114,0 км космический корабль
Читайте также:  Посмотреть запись с камеры видеонаблюдения в подъезде

Дальность видимости [ править | править код ]

На рисунке справа дальность видимости объекта определяют по формуле

D B L = 3.57 ( h B + h L ) <displaystyle D_<mathrm >=3.57,( <sqrt >>>+ <sqrt >>>)> ,

где D B L <displaystyle D_<mathrm >> — дальность видимости в километрах,
h B <displaystyle h_<mathrm >> и h L <displaystyle h_<mathrm >> — высоты точки наблюдения и объекта в метрах.

Если учесть земную рефракцию, то формула примет вид:

D B L 3.86 ( h B + h L ) . <displaystyle D_<mathrm >

То же самое, но D B L <displaystyle D_<mathrm >> — в морских милях:

D B L 2.08 ( h B + h L ) . <displaystyle D_<mathrm >

Для приближённого расчёта дальности видимости объектов применяют номограмму Струйского (см. илл.): на двух крайних шкалах номограммы отмечают точки, соответствующие высоте точки наблюдения и высоте объекта, затем проводят через них прямую и на пересечении этой прямой со средней шкалой получают дальность видимости объекта [15] .

На морских картах, в лоциях и других навигационных пособиях дальность видимости маяков и огней указывается для высоты точки наблюдения равной 5 м [10] . Если высота точки наблюдения иная, то вводится поправка [16] .

Горизонт на Луне [ править | править код ]

Нужно сказать, что расстояния на Луне очень обманчивы. Благодаря отсутствию воздуха удалённые предметы видятся на Луне более чётко и поэтому всегда кажутся ближе.

Лунный горизонт практически вдвое ближе земного. При этом расстояние до лунного горизонта зрительно определить крайне сложно по причине отсутствия атмосферы [17] , а также объектов известного размера, по которым можно бы судить о масштабе.

Истинный горизонт [ править | править код ]

Истинный горизонт — мысленно воображаемый большой круг небесной сферы, плоскость которого перпендикулярна отвесной линии в точке наблюдения. Аналогично общему понятию, истинным горизонтом может называться не круг, а окружность, то есть линия пересечения небесной сферы и плоскости, перпендикулярной отвесной линии.

Синонимы: математический горизонт, астрономический горизонт [18] .

Искусственный горизонт — прибор, которым пользуются для определения истинного горизонта.

Например, истинный горизонт легко определить, если поднести к глазам стакан с водой так, чтобы уровень воды был виден как прямая линия [19] .

Горизонт в философии [ править | править код ]

Понятие горизонта в философию вводит Эдмунд Гуссерль, а Гадамер определяет его следующим образом: «Горизонт — поле зрения, охватывающее и обнимающее все то, что может быть увидено из какого-либо пункта» [20]

Читайте также:  Программа собственный узел диагностики с использованием сценариев

Таблица расстояния до горизонта (удаления горизонта) в зависимости от высоты глаз наблюдателя.

Расстояние до горизонта, конечно, можно вычислить по формуле: S = [(R+h) 2 – R 2 ] 1/2 где:

  • S- высота глаз наблюдателя в метрах
  • R – радиус Земли- обычно: 6367250 м
  • h – высота глаз наблюдателя над поверхностью в метрах

Но намного удобнее пользоваться таблицей (которая, конечно, приблизительна, да верна только для моря, но все равно – человеку с головой – дает полное представление о явлении):

Расстояние до горизонта

Какова дальность до линии горизонта для наблюдателя, стоящего на земле? Ответ — приближённое расстояние до горизонта — можно найти с помощью теоремы Пифагора.

Для проведения приближённых расчётов сделаем допущение, что Земля имеет форму шара. Тогда стоящий вертикально человек будет продолжением земного радиуса, а линия взгляда, направленного на горизонт, — касательной к сфере (поверхности Земли). Так как касательная перпендикулярна радиусу, проведённому в точку касания, то треугольник (центр Земли) —(точка касания) —(глаз наблюдателя) является прямоугольным.

Две стороны в нём известны. Длина одного из катетов (стороны, прилегающей к прямому углу) равна радиусу Земли $R$, а длина гипотенузы (стороны, лежащей против прямого угла) равна $R+h$, где $h$ — расстояние от земли до глаз наблюдателя.

По теореме Пифагора, сумма квадратов катетов равна квадрату гипотенузы. Значит, расстояние до горизонта равно
$$
d=sqrt <(R+h)^2-R^2>= sqrt <(R^2+2Rh+h^2)-R^2>=sqrt<2Rh+h^2>.
$$

Величина $h^2$ очень мала по сравнению со слагаемым $2Rh$, поэтому верно приближённое равенство
$$
d≈ sqrt<2Rh>.
$$

Известно, что $R≈ 6400$ км, или $R≈ 64cdot10^5$ м. Будем считать, что $h≈ 1<,>6$ м. Тогда
$$
d≈sqrt<2cdot64cdot10^5cdot 1<,>6>=8cdot 10^3 cdot sqrt<0<,>32>.
$$

Используя приближённое значение $sqrt<0<,>32>≈ 0<,>566$, находим
$$
d≈ 8cdot10^3 cdot 0<,>566=4528.
$$

Полученный ответ — в метрах. Если перевести найденное приближённое расстояние от наблюдателя до горизонта в километры, то получим $d≈ 4,5$ км.

Разворот книги

Иллюстрации

Приложения

Математика

Дополнения, комментарии

Как связано расстояние до горизонта с изменением высоты точки наблюдения? Формула $d≈ sqrt<2Rh>$ даёт ответ: чтобы увеличить расстояние $d$ вдвое, высоту $h$ надо увеличить в четыре раза!

В формуле> $d≈ sqrt<2Rh>$ нам пришлось извлекать квадратный корень. Конечно, читатель может взять смартфон со встроенным калькулятором, но, во‐первых, полезно задуматься, а как же решает эту задачу калькулятор, а во‐вторых, стоит ощутить умственную свободу, независимость от «всезнающего» гаджета.

Существует алгоритм, сводящий извлечение корня к более простым операциями — сложению, умножению и делению чисел. Для извлечения корня из числа $a>0$ рассмотрим последовательность
$$
x_=frac12 <left(x_n+frac
ight)>,
$$

Читайте также:  Сайт для накрутки подписчиков на ютуб

где $n=0$, 1, 2, …, а в качестве $x_0$ можно взять любое положительное число. Последовательность $x_0$, $x_1$, $x_2$, … очень быстро сходится к $sqrt$: точность приближения возрастает вдвое после каждого шага.

Уже на втором шаге мы получили ответ, верный в третьем знаке после запятой ($sqrt<0<,>32>=0<,>56568…$)!

Планиметрическая теорема Бойаи—Гервина утверждает, что два равновеликих многоугольника (т. е. имеющих равные площади) равносоставлены. Последнее означает, что любой из них можно разрезать на несколько многоугольников так, что из этих частей можно сложить второй многоугольник.

Применительно к конструкции в теореме Пифагора получаем, что квадраты, построенные на катетах, можно разрезать на части‐многоугольники, из которых «складывается» квадрат, построенный на гипотенузе. Подобных разбиений множество, но самое экономное только одно, наименьшее число частей равно 5. Обратите внимание на то, что такое разбиение возможно для произвольного прямоугольного треугольника.

Головоломку проще всего изготовить из двух листов толстого картона: один будет служить основанием, на другом вырезаются три квадрата, затем листы склеиваются. Два меньших квадрата разрезаются на части. Задание — сложить из кусочков маленьких квадратов большой, без пустот и наложений элементов.

Ещё один тип учебных пособий, иллюстрирующих теорему Пифагора, связан со взвешиванием «изготовленных» геометрических фигур.

Чтобы теорема Пифагора стала утверждением о равенстве площадей, на сторонах прямоугольного треугольника были построены квадраты. Но если их заменить однотипными подобными правильными многоугольниками или полукругами, то сумма площадей на катетах также будет равна площади фигуры на гипотенузе. Например, для полукругов равенство площадей
$$
frac<π> <8>a^2 + frac<π> <8>b^2= frac<π> <8>c^2
$$

получается из теоремы Пифагора умножением элементов формулы на число $frac<π><8>$.

А вот если взять трёх «подобных» слонов, стоящих на сторонах треугольника и «вписанных» в квадраты, то готовой формулы для площадей таких фигур нет, но из подобия фигур можно вывести, что по площади каждая фигура занимает в своём квадрате одну и ту же часть:
$$
S_a+S_b=ka^2+kb^2=kc^2=S_c.
$$

Можно проверить справедливость этих выводов опытным путём, взвесив на весах (например, простейших рычажных) эти фигуры, и убедиться, что $S_a+S_b=S_c$. Причём начать можно с самих квадратов со сторонами $a$, $b$ и $c$.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>