Скорость падения тела в воздухе

Свобо́дное падéние — равнопеременное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы. На поверхности Земли (на уровне моря) ускорение свободного падения меняется от 9,832 м/с² на полюсах, до 9,78 м/с² на экваторе.

В частности, парашютист в течение нескольких первых секунд прыжка находится практически в свободном падении.

Свободное падение возможно на поверхность любого тела, обладающего достаточной массой (планеты и их спутники, звёзды, и т. п.).

Во время свободного падения какого-либо объекта этот объект находится в состоянии невесомости (как если бы он находился на борту космического аппарата, движущегося по околоземной орбите). Данное обстоятельство используется, например, при тренировке космонавтов: самолёт с космонавтами набирает большую высоту и пикирует, находясь в течение нескольких десятков секунд в состоянии свободного падения; космонавты и экипаж самолёта при этом испытывают состояние невесомости [1] .

Содержание

Комментарий к определению [ править | править код ]

Поскольку сила тяжести понимается как сила, действующая вблизи планеты, определению «свободного падения» строго соответствуют движения тела около поверхности Земли или другого крупного астрономического объекта. Важным условием является малость сопротивления среды (или её отсутствие [2] ). Примером служит полёт камня, брошенного с поверхности или с некоторой высоты под любым углом (при небольших скоростях сопротивлением воздуха можно пренебречь), причём движение вверх тоже является свободным падением, вопреки интуитивному восприятию. Траектория может иметь форму участка параболы или отрезка прямой.

Очень часто, однако, под «свободным падением» подразумевается только движение тела вертикально вниз и без начальной скорости, у земной поверхности [3] . При этом, в бытовых рассуждениях, сила сопротивления атмосферы иногда трактуется не как искажающий фактор, а как полноценный атрибут такого движения, на равных с силой тяжести.

Изредка «свободное падение» трактуется шире официального определения, а именно допускается движение тела на значительном удалении от планеты. Тогда в определение вписываются, скажем, вращение Луны вокруг Земли или падение тел из космоса. Объект, свободно падающий из бесконечности на планету, достигает её поверхности или верхних слоёв атмосферы со скоростью не ниже второй космической, а траектория представляет собой кусок гиперболы, параболы или прямой; ускорение непостоянно, так как изменения гравитационной силы в пределах изучаемой области существенны.

История [ править | править код ]

Первые попытки построить количественную теорию свободного падения тяжёлого тела были предприняты учёными Средневековья; в первую очередь следует назвать имена Альберта Саксонского и Николая Орема. Однако они ошибочно утверждали [4] [5] , что скорость падающего тяжёлого тела растёт пропорционально пройденному пути. Эту ошибку впервые исправил Д. Сото (1545), который сделал правильный вывод о том, что скорость тела растёт пропорционально времени, прошедшему с момента начала падения, и нашёл [6] [7] закон зависимости пути от времени при свободном падении (хотя эта зависимость была дана им в завуалированном виде). Чёткая же формулировка закона квадратичной зависимости пути, пройденного падающим телом, от времени принадлежит [8] Г. Галилею (1590) и изложена им в книге «Беседы и математические доказательства двух новых наук» [9] . Сначала Лейбниц, а затем, в 1892—1893 гг. профессор МГУ Н. А. Любимов поставили опыты, демонстрирующие возникновение невесомости при свободном падении [10] .

Читайте также:  Проверка частотности запросов списком

Демонстрация явления [ править | править код ]

При демонстрации явления свободного падения откачивают воздух из длинной трубки, в которую помещают несколько предметов разной массы. Если перевернуть трубку, то тела, независимо от их массы, упадут на дно трубки одновременно.

Если же эти предметы поместить в какую-либо среду, то к действию силы тяжести добавится сила сопротивления, и тогда времена падения данных предметов уже не обязательно будут совпадать, а будут в каждом случае зависеть от формы тела и его плотности.

Количественный анализ [ править | править код ]

Введём систему координат Oxyz с началом на поверхности Земли и направленной вертикально вверх осью y и рассмотрим свободное падение тела массы m с высоты y [11] , пренебрегая вращением Земли и сопротивлением воздуха. Дифференциальное уравнение движения тела в проекции на ось y имеет [12] вид:

m y ¨ = − m g , <displaystyle m<ddot >;=;-,mg,,>

где g — ускорение свободного падения, а точками над величиной обозначается её дифференцирование по времени.

Интегрируя данное дифференциальное уравнение при заданных начальных условиях y = y и v = v (здесь v — проекция скорости тела на вертикальную ось), находим [13] зависимость переменных y и v от времени t :

v = v 0 + g t ; <displaystyle v;=;v_<_<0>>,+,gt,,;> y = y 0 + v 0 t − g t 2 2 . <displaystyle y;=;y_<_<0>>,+,v_<_<0>>t,-<frac <2>><2>>,,.>

В частном случае, когда начальная скорость равна нулю (то есть тело начинает падение, не испытав толчка вверх или вниз), из этих формул видно, что текущая скорость тела пропорциональна времени, прошедшему с момента начала свободного падения, а пройденный телом путь — квадрату времени.

Подчеркнём, что результаты не зависят от значения массы m .

Рекорды свободного падения [ править | править код ]

В бытовом смысле под свободным падением нередко подразумевают движение в атмосфере Земли, когда на тело не действуют никакие сдерживающие или ускоряющие факторы, кроме силы тяжести и сопротивления воздуха.

Согласно Книге рекордов Гиннесса, мировой рекорд расстояния, преодолённого при свободном падении, составляющий 24 500 м , принадлежит Евгению Андрееву. Последний установил данный рекорд во время парашютного прыжка с высоты 25 457 м , совершённого 1 ноября 1962 года в районе Саратова; тормозной парашют при этом не применялся [14] .

16 августа 1960 г. Джозеф Киттингер совершил рекордный прыжок с высоты 31 км с использованием тормозного парашюта.

В 2005 году Луиджи Кани установил мировой рекорд скорости (прыжок в тропосфере), достигнутой в свободном падении — 553 км/ч .

В 2012 году Феликс Баумгартнер установил новый мировой рекорд скорости в свободном падении, развив скорость 1342 километра в час [15] .

30 июля 2016 года американский скайдайвер Люк Айкинс установил уникальный рекорд, совершив прыжок без парашюта с высоты 7600 метров на сеть размером 30×30 м с использованием наземных средств для ориентации [16] .

Читайте также:  Словарь для мобильного телефона

Что такое свободное падение? Это падение тел на Землю при отсутствии сопротивления воздуха. Иначе говоря – падение в пустоте. Конечно, отсутствие сопротивления воздуха – это вакуум, который нельзя встретить на Земле в нормальных условиях. Поэтому мы не будем брать силу сопротивления воздуха во внимание, считая ее настолько малой, что ей можно пренебречь.

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Ускорение свободного падения – ускорение, с которым все тела падают на Землю.

Ускорение свободного падения приблизительно равно 9 , 81 м с 2 и обозначается буквой g . Иногда, когда точность принципиально не важна, ускорение свободного падения округляют до 10 м с 2 .

Земля – не идеальный шар, и в различных точках земной поверхности, в зависимости от координат и высоты над уровнем моря, значение g варьируется. Так, самое большое ускорение свободного падения – на полюсах ( ≈ 9 , 83 м с 2 ) , а самое малое – на экваторе ( ≈ 9 , 78 м с 2 ) .

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его.

Свободное падение – прямолинейное движение с постоянным ускорением. Направим ось координат от точки начального положения тела к Земле. Применяя формулы кинематики для прямолинейного равноускоренного движения, можно записать.

h = v 0 + g t 2 2 .

Так как начальна скорость равна нулю, перепишем:

Отсюда находится выражение для времени падения тела с высоты h :

Принимая во внимание, что v = g t , найдем скорость тела в момент падения, то есть максимальную скорость:

v = 2 h g · g = 2 h g .

Движение тела, брошенного вертикально вверх

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

Подставив v = 0 , найдем время подъема тела на максимальную высоту:

Время падения совпадает со временем подъема, и тело вернется на Землю через t = 2 v 0 g .

Максимальная высота подъема тела, брошенного вертикально:

Взглянем на рисунок ниже. На нем приведены графики скоростей тел для трех случаев движения с ускорением a = – g . Рассмотрим каждый из них, предварительно уточнив, что в данном примере все числа округлены, а ускорение свободного падения принято равным 10 м с 2 .

Первый график – это падение тела с некоторой высоты без начальной скорости. Время падения t п = 1 с . Из формул и из графика легко получить, что высота, с которой падало тело, равна h = 5 м .

Второй график – движение тела, брошенного вертикально вверх с начальной скоростью v 0 = 10 м с . Максимальная высота подъема h = 5 м . Время подъема и время падения t п = 1 с .

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

Читайте также:  Рмбт форум по ремонту

Движение тела, брошенного под углом к горизонту

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

Вдоль оси O Y тело движется равноускоренно с ускорением g , начальная скорость этого движения – v 0 y . Движение вдоль оси O X – равномерное и прямолинейное, с начальной скоростью v 0 x .

Условия для движения вдоль оси О Х :

x 0 = 0 ; v 0 x = v 0 cos α ; a x = 0 .

Условия для движения вдоль оси O Y :

y 0 = 0 ; v 0 y = v 0 sin α ; a y = – g .

Приведем формулы для движения тела, брошенного под углом к горизонту.

Время полета тела:

t = 2 v 0 sin α g .

Дальность полета тела:

L = v 0 2 sin 2 α g .

Максимальная дальность полета достигается при угле α = 45 ° .

L m a x = v 0 2 g .

Максимальная высота подъема:

h = v 0 2 sin 2 α 2 g .

Отметим, что в реальных условиях движение тела, брошенного под углом к горизонту, может проходить по траектории, отличной от параболической вследствие сопротивления воздуха и ветра. Изучением движения тел, брошенных в пространстве, занимается специальная наука – баллистика.

На величину скорости падающего тела влияет не только высота падения, но и сила сопротивления воздуха. Так, для человека падение на землю с высоты третьего этажа всегда опасно. В то же время такое падение может быть безопасным для мелких животных. Причина этого состоит в следующем. На падающее тело действуют две силы: сила тяготения, пропорциональная массе тела, и противоположно ей направленная сила сопротивления воздуха, зависящая от размеров поперечного сечения предмета и его скорости.

Скорость падающего тела возрастает до тех пор, пока величина силы сопротивления не сравняется с силой тяжести. После чего падение станет равномерным. Максимальная скорость падения называется предельной скоростью и зависит от отношения площади поперечного сечения к весу тела Чем больше это отношение, тем меньше будет предельная скорость. Вес тела пропорционален кубу размеров (mg

l 3 ), а площадь сечения пропорциональна квадрату размеров (S

l 2 ). Поэтому при уменьшении размеров тела отношение растет , а предельная скорость падения уменьшается.

Для падающих тел, не являющихся сферическими, площадь поперечного сечения зависит от ориентации тела относительно земли. Соответственно от ориентации тела зависит и предельная скорость падения. Этим пользуются парашютисты для изменения скорости в фазе свободного падения.

Предельная скорость падающего человека приблизительно равна 65 м/с в том случае, если он расправит руки и ноги так, как это делает парашютист. Если бы человек имел шарообразную форму, его предельная скорость возросла бы до 105 м/с. Максимальная скорость падения маленького насекомого равна нескольким метрам в секунду.

Если бы сила сопротивления воздуха не ограничивала скорость падения, то капли дождя, падающие с высоты 3000 м, достигали бы Земли на скорости 270 м/с. При этом дождь стал бы причиной невероятных повреждений.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>