Сложение чисел с одинаковыми степенями

Сложение и вычитание степеней

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.

Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 – b n и h 5 -d 4 есть a 3 – b n + h 5 – d 4 .

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a 2 и 3a 2 равна 5a 2 .

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степени одинаковых переменных, должны слагаться их сложением с их знаками.

Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Из 2a 4 3h 2 b 6 5(a – h) 6
Вычитаем -6a 4 4h 2 b 6 2(a – h) 6
Результат 8a 4 -h 2 b 6 3(a – h) 6

Или:
2a 4 – (-6a 4 ) = 8a 4
3h 2 b 6 – 4h 2 b 6 = -h 2 b 6
5(a – h) 6 – 2(a – h) 6 = 3(a – h) 6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

Первый множитель x -3 3a 6 y 2 a 2 b 3 y 2
Второй множитель a m -2x a 3 b 2 y
Результат a m x -3 -6a 6 xy 2 a 2 b 3 y 2 a 3 b 2 y

Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат – это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Здесь 5 – это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, a n .a m = a m+n .

Для a n , a берётся как множитель столько раз, сколько равна степень n;

И a m , берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

Первый множитель 4a n b 2 y 3 (b + h – y) n
Второй множитель 2a n b 4 y (b + h – y)
Результат 8a 2n b 6 y 4 (b + h – y) n+1

Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h – y) n ⋅ (b + h – y) = (b + h – y) n+1

Читайте также:  Процессоры amd am2 am3

Умножьте (x 3 + x 2 y + xy 2 + y 3 ) ⋅ (x – y).
Ответ: x 4 – y 4 .
Умножьте (x 3 + x – 5) ⋅ (2x 3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых – отрицательные.

1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

Если a + b умножаются на a – b, результат будет равен a 2 – b 2 : то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат, результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a – y).(a + y) = a 2 – y 2 .
(a 2 – y 2 )⋅(a 2 + y 2 ) = a 4 – y 4 .
(a 4 – y 4 )⋅(a 4 + y 4 ) = a 8 – y 8 .

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

Делимое 9a 3 y 4 a 2 b + 3a 2 d⋅(a – h + y) 3
Делитель -3a 3 a 2 (a – h + y) 3
Результат -3y 4 b + 3 d

Запись a 5 , делённого на a 3 , выглядит как $frac$. Но это равно a 2 . В ряде чисел
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются..

Так, y 3 :y 2 = y 3-2 = y 1 . То есть, $frac = y$.

И a n+1 :a = a n+1-1 = a n . То есть $frac = a^n$.

Делимое y 2m 8a n+m 12(b + y) n
Делитель y m 4a m 3(b + y) 3
Результат y m 2a n 4(b +y) n-3

Или:
y 2m : y m = y m
8a n+m : 4a m = 2a n
12(b + y) n : 3(b + y) 3 = 4(b +y) n-3

Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a -5 на a -3 , равен a -2 .
Также, $frac<1> : frac<1> = frac<1>.frac <1>= frac = frac<1>$.

h 2 :h -1 = h 2+1 = h 3 или $h^2:frac<1> = h^2.frac <1>= h^3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $frac<5a^4><3a^2>$ Ответ: $frac<5a^2><3>$.

2. Уменьшите показатели степеней в $frac<6x^6><3x^5>$. Ответ: $frac<2x><1>$ или 2x.

3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .

4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

5. Умножьте (a 3 + b)/b 4 на (a – b)/3.

Читайте также:  Скрытые друзья вконтакте 220

6. Умножьте (a 5 + 1)/x 2 на (b 2 – 1)/(x + a).

7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.

Количество источников, использованных в этой статье: 5. Вы найдете их список внизу страницы.

Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.

Степень, а точнее показатель степени, говорит нам о том, сколько раз следует умножить данное число (основание степени) на само себя. [1] Чтобы найти сумму степеней, следует уметь определить, вручную либо на калькуляторе, значение каждого слагаемого. При сложении переменных со степенями необходимо знать правила суммирования схожих членов.

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

a m · a n = a m + n , где « a » — любое число, а « m », « n » — любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15

Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

Нельзя заменять сумму (3 3 + 3 2 ) на 3 5 . Это понятно, если
посчитать (3 3 + 3 2 ) = (27 + 9) = 36 , а 3 5 = 243

Свойство № 2
Частное степеней

При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

m : a n =–>

a m
a n

= a m − n , где « a » — любое число, не равное нулю, а « m », « n » — любые натуральные числа такие, что « m > n ».

  • Записать частное в виде степени
    (2b) 5 : (2b) 3 = (2b) 5 − 3 = (2b) 2
  • Вычислить.
    11 3 · 4 2
    11 2 · 4

    = 11 3 − 2 · 4 2 − 1 = 11 · 4 = 44

  • Пример. Решить уравнение. Используем свойство частного степеней.
    3 8 : t = 3 4

Ответ: t = 3 4 = 81

Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

    Пример. Упростить выражение.
    4 5m + 6 · 4 m + 2 : 4 4m + 3 = 4 5m + 6 + m + 2 : 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5

Пример. Найти значение выражения, используя свойства степени.

512 · 4
32

=

512 · 4
32

=

2 9 · 2 2
2 5

=

2 9 + 2
2 5

=

2 11
2 5

= 2 11 − 5 = 2 6 = 64

Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

Нельзя заменять разность (4 3 −4 2 ) на 4 1 . Это понятно, если посчитать (4 3 −4 2 ) = (64 − 16) = 48 , а 4 1 = 4

Свойство № 3
Возведение степени в степень

При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

(a n ) m = a n · m , где « a » — любое число, а « m », « n » — любые натуральные числа.

  • Пример.
    (a 4 ) 6 = a 4 · 6 = a 24
  • Пример. Представить 3 20 в виде степени с основанием 3 2 .

По свойству возведения степени в степень известно, что при возведении в степень показатели перемножаются, значит:

Свойства 4
Степень произведения

При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

(a · b) n = a n · b n , где « a », « b » — любые рациональные числа; « n » — любое натуральное число.

  • Пример 1.
    (6 · a 2 · b 3 · c ) 2 = 6 2 · a 2 · 2 · b 3 · 2 · с 1 · 2 = 36 a 4 · b 6 · с 2
  • Пример 2.
    (−x 2 · y) 6 = ( (−1) 6 · x 2 · 6 · y 1 · 6 ) = x 12 · y 6

Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

(a n · b n )= (a · b) n

То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

  • Пример. Вычислить.
    2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
  • Пример. Вычислить.
    0,5 16 · 2 16 = (0,5 · 2) 16 = 1

В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

Пример возведения в степень десятичной дроби.

4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

Свойства 5
Степень частного (дроби)

Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

(a : b) n = a n : b n , где « a », « b » — любые рациональные числа, b ≠ 0, n — любое натуральное число.

  • Пример. Представить выражение в виде частного степеней.
    (5 : 3) 12 = 5 12 : 3 12

Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

You may use these HTML tags and attributes:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>